In the case of concavity of the graph of the unknown parameter

1 —n

A@) =AO{l-+[—1+p"10} ;
1— {5’7— (=) u- ﬁ”{i}}ﬁ
0= c-or SN
1—p "
in the case of convexity
l
A@®)=AO){l + [—1-+p"6}"
e
0= [—p
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CONSTRUCTION OF A REGULARIZED SOLUTION TO
ONE INVERSE HEAT-CONDUCTION PROBLEM WITH
RANDOM ERRORS IN THE INITIAL DATA

Yu. E. Voskoboinikov and Ya. Ya. Tomsons UDC 536.24.01

An analysis is made of the statistical criterion for the choice of a regulation parameter
in the reconstruction of the heat [lux at the surface of a body from the temperature inside
the body measured with a random error.

1. The determination of the heat flux at the surface of a body from the temperature field measured in-
side the body is a very common inverse boundary problem of heat conduction in the analysis of experimental
results [1].

Let us consider an infinite plate with a thickness d which is thermally insulated on one side. The tem-
perature field t(x, 7) at a depth x produced by a variable heat flux g(r) entering through the boundary x =d is
determined by the integral equation [2]

jz h(x, d; v, 1) g (ry)dr, = £ (%, T) )
0

where h(x, d; 7, 7,) is the Green function for a plate of finite thickness. In the case of a nonzero initial tem-
perature distribution t(¢, 0) the right side of (1) is written in the form [2]
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d .
' (x, 1) = #(x, 7)— const 5‘ h{x, & T, 0)¢(E 0)dE.
0

Because of the noise of the temperature sensor and the amplifiers, instead of the exact value of the
temperature field t(x, ) at the point x one is able to record a process E(x, T7) =t{x, 7) +nx, 1), where n(x, 1)
is the noise in the measurement of the temperature field. We make the following assumptions concerning the
measurement noise: a) the process n(x, 7) is a steady random process with a zero mathematical expectation
and does not depend on t(x, 7); b) the correlation function Ky, (r) for this random process is known, The latter
assumption is satisfied very often in practice, since before conducting the experiment it is possible to record
a process t(x, 7) whose pulsations are entirely due to the measurement noise and to calculate Ky, (r) for the
required value of the argument using well-known methods.

Thus, the inverse heat-conduction problem (IHCP) under consideration can be formulated as follows:
from the temperature field t(x, 7) recorded at the point x to determine the heat flux g(r) entering the plate,
which is the solution of a Volterra integral equation of the first kind (1).

Such a problem belongs to the class of incorrectly stated problems [3]. In the numerical solution of (1)
the incorrectness entails the poor conditionality of the system of algebraic equations

Hg=1, ' @)
where g and t are vectors of dimensionality N_ and N; comprised of the values of g(r) and E(x, 7) on some dif-
ference grid while H is an (N; x Ng) matrix approximating the original integral operator, with the approxima-
tion error being negligibly small in comparison with the measurement noise. The poor conditionality of the

system (2) is manifested in the characteristic "sawtoothed" form of its solution, which differs considerably
from the true solution. ‘

The Tikhonov regularization method, where the regularized solution is sought from the condition of the
minimum of the smoothing functional, which ultimately leads to the solution of a well-specified system of
equations, has obtained wide application in the solution of incorrectly stated problems. In our case the pres-~
ence of a priori information on the statistical properties of the measurement noise allows us to use the methods
of mathematical statistics both in the construction of the regularized solution and in the choice of the regulariza~
tion parameter.

2. The regularized solution of the IHCP under consideration will be found from the condition of the mini-
mum of the functional [4)

D, lg, 1 =|T— Hell- -+ allg I~ (3)

where R is an (Nt X Nt) correlation matrix with elements {R}kj =K,k —Tj); I' is a positive-definite symmetri-
cal (Ng x Ng) matrix assigned a priori and such that the quadratic form lig/l i.—i =gT I'-1g represents a finite-
difference approximation of a functional reflecting the measure of smoothness of the unknown solution g(r). The
vector g, at which the minimum of (3) is reached and which is determined from the system

(@l -+ H'R™'H)g, = H'R™, )
where T is the transposition symbol, will be called the skeleton of the regularized solution of the IHCP.

An important problem arising in the construction of the skeleton 8 is the choice of the unknown regulari-
zation parameter o. From the point of view of the accuracy of the solution of Eq. (1) it is desirable to choose
o SO as to minimize some functional e(q) of the error of the solution, characterizing the closeness of gy to the
pseudosolution g+ = (HTH)'lHTt of the system (2), which emerges in the role of the skeleton of the solution of
the IHCP when the right side is assigned exactly. Mathematically this comes down to the solution of the ex~
tremal problem

infe (o) = & (c)- (5)

az0.

-Henceforth we will call the parameter o, the I'-optimal regularization parameter (RP), thereby emphasizing

that @, minimizes &(a) only with the adopted matrix T, while the operator T(ao) = (oI~ + HTR-'H)-'HTR-! is
the T'-optimal regularizing operator. In contrast to the well-known approaches to the choice of o, which per-
mit one to construct solutions which are optimal in order of magnitude [5]; in the present report the I'-optimal
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TABLE 1. Errors in the Construction of Skeletons for the Solution

of the THCP
Noise Skeleton go Skeleton Say ‘ Skeleton g+
level & £ ; £ g, 25 £ 2
0,0187 0,0915 0,0462 0,1202 0,0591 8,98 7,17
0,0468 0,1002 0,0602 3, 1581 0,0862 22,45 17,94
0,0937 0, 1171 0,08561 0,205¢ 0,1261 . 44,91 35,88
g(t),(7)
L)
q75
50
025
g

-010
Fig. 1. Results of a numerical experiment on
the reconstruction of the heat f}ux; 1) assigned
heat flux g(r); 2) temperature t(r) measured with
a noise 6 = 0.046; 3) regularized skeleton g, con~
structed with o = 0A.

value of the RP is calculated on the hasis of the testing of statistical hypothesis concerning the covariation
matrix of the discrepancy vector.

3. As the criterion of aceuracy in the construction of the regularized skeleton of the solution of the
HCP we take the root-mean-square ervor e(o) = M{lig, —g %], where M is the mathematical expectation

operator. Introducing the matrix Vgia) = M{(g,~ gﬁ(iga— ghT1intothe analysis andusing € (@) =Sp[V¢(0)], where
Sp{Al is the spur of the matrix A, the problem (5) can be reduced to the extremal problem

& (o) = inf Sp [T (@) V5 T (@) — 2V H T () + V1, 6)

where V}"‘ =M {E%T]; Vo, =gt +T, The solution of the problem (6) allows one to obtain the sufficient condition
for the I'-optimality of the value of the RP, which has the form of the identity

TlagVy = Vi . @

Since Vg is not known, however, this identity cannot be used for the construction of the I'-optimal regularizing
operator. This difficulty can be overcome in the following way.

Let us determine the covariation matrix Ve(a) = M{eaeaT} of the discrepancy vector e, =t -~ Hg,, with
o =ay. We can show that from (7) we immediately get the identity

Velow) = R(R + og ' HPHY R, ®
which represents the sufficient condition for the I'-optimality of the RP,

The identity (8) is essentially the criterion for the I'optimality of the RP, and in contrast to (7) its use
does not require a priori information about g*. However, to test (3) one must know the matrices standing on
both sides of (8). The difficulty arising in this stage consists in the impossibility of calculating the matrix
Vefa) from one realization of the random discrepancy vector. Therefore, fo test (8) one must apply the methods
for testing statistical hypotheses on the equality of covariation matrices, which are widely used in multivariate
statistical analysis [6}.
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As the null hypothesis A, we take the assumption that Vg (o) =R®R + o~*HI'HT)-!R, while as the alter-
native A; we take Vo(a) #R(R + a~-'HTHT)~!R, The value of the RP at which the null hypothesis is accepted,
i.e., :

V.(2,) =R (R+ a;HTHT) 'R, (9)

using the chosen criterion F, is designated as a 4. One can show that e(@ A)<mér{x§C ?(o&), where {« 1} is the set

of values of @ = 0 for which the hypothesis A is accepted. Thus, the value of o 4 is the Ioptimal RP for the
set @ AU{a;} and for the construction of g, it only remains to find the o at which the hypothesis A, is accepted.

The simplest algorithm for finding o 5 is based on the testing of the distribution of the quadratic form

pl@) =¢,TR-! R +o~'HIHT)R-le,, which, with the acceptance of the hypothesis A, must conform to a x*

distribution with N; degree of freedom. Without repeating the arguments expounded in [7], we only present
the final entry of the calculating procedure of this algorithm, which has a recurrent form relative to y = 1/a:

g = 7o+ RO ['1_ R (v)

R (1s) N,

where R(y) = p(1/y), while the derivative R'(y) is determined numerically: R‘(y) = [R(y + Ay)—Ry—Ay)])/2Ay.
The process of finding o = 1/y ceases when the value of R(y) falls within the interval 6N (@) = BN;@/2), 9N

(1 —a/2)], where &Nt(a/Z) —a/2 is the quartile of a x? distribution with N¢ degrees of freedom, which corre-

ponds to the acceptance of the hypothesis with an error of the first kind equal to a. The procedure (10) has a
high rate of convergence to the value o o and the number of iterations needed for R(y) to fall within the inter-
val ONt @) usually does not exceed five,

], W< 1, (0

We note that the algorithm for choosing o on the basis of the testing of the hypothesis A, guarantees the
convergence of g, to g* in the root-mean-square metric [7], i.e., imM[ligy —g*Ii?] =0 as Sp[R] — 0.

To estimate the statistical characteristics of the error in the construction of the skeleton of the solution
of the IHCP it is convenient to introduce the displacement vector by, = Mlgg]—g™ and the correlation matrix

Cy = Mig, — Mgy ) €g — Mg DT [7].

The algorithm described above for the construction of the regularized skeleton was placed at the basis
of a program for the solution of Eq. (1) which is used successfully at the Institute of Thermophysics, Siberian
Branch of the Academy of Sciences of the USSR, and other organizations.

4. Let us present the results of a numerical experiment. A measurement noise with a relative error
6 = (2 nz(j))” z / (2 2 (j))” 2 was imposed on a temperature field t(r), measured exactly at the point x and
. i i

corresponding to an assigned heat flux g(r). The skeleton g, was constructed from the vector t thus obtained.

The skeleton g, for § =0.046 is presented in Fig. 1. Despite the discontinuities in the derivatives of the func-
tion g(r), which makes it "poor" for reconstruction, the skeleton gy coincides rather well with g(r). The rel-

ative values.

& —max| s, ()| max|g* () e = (Z () /(; G0

of the error ¢, () =g, () —g*(j) for g, and for the skeleton 8aT? constructed using Tikhonov's first-order reg-
ularizing operator with o chosen in accordance with the discrepancy principle, i.e., from the condition ||t —
g2 = Npody, where o}y is the dispersion of the measurement noise, are presented in Table 1. The errors
in the construction of the skeleton g* = (HTH)~'HTt, which represents the unregularized solution of the IHCP,
are also presented here. It is seen that the use of regularization methods considerably increases the accuracy
of the solution of the IHCP. The smaller error in the construction of the skeleton g, can be explained by the
allowance for the statistics of the measurement noise in the construction of the regularized solution of the
THCP and the choice of the regularization parameter.

In conclusion, we note that the approach to the choice of the regularization parameter discussed in the-
report can’ be used in the solution of poorly specified systems of algebraic equations for which the right sides
are given with an error having a random nature. ‘
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NOTATION

g(r), heat flux at surface of plate; t(x, 7) temperature at the point x; n(x, 7), noise of temperature
measurement; E(x, 7), temperature measured at the point x; 7, time; t and g, vectors composed of the values
of the functions t(x, 7) and g(r); H, matrix approximating the original integral equation; o, regularization
parameter.
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Do =

(2]

NUMERICAL ALGORITHM FOR THE SOLUTION OF LINEAR
TWO-DIMENSIONAL INTEGRAL EQUATIONS OF THE FIRST KIND

V. D. Perminov UDC 526.24.01

A numerical algorithm is proposed for the solution of two-dimensional integral equations
of the first kind, to which some inverse problems of heat conduction are reduced.

It is known that many problems of practical importance in the analysis of experimental results lead to
the solution of a linear integral equation of the first kind in a rectangular region (for example, thermophysical
problems of the determination of the heat flux to axisymmetric and plane bodies from the assigned time de~
pendence of the temperature at part of the boundary of the region, the geophysical problem of the interface
between two media with different densities, and others):

Af = j f K(x, y, s, Of(s, tydsdt = (x, y), )
Dy

x, yeD={0<x<, 0<y<l); s t€Dy(x y<=D.

The problem of the solution of such an equation is, generally speaking, incorrectly stated. If the solution of
Eq. (1) is unigue for an assigned right side ¢ (x, y) then the solution f(s, t) can be obtained by the regulariza-
tion method proposed by Tikhonov {1, 2]. In accordance with this method an approximate solution f¢ (s, t) is
defined as a function yielding the minimum of the functional

ME1E, 4= [ [ 1Af — 1 dxdy + o | [{pif+- pofs
D D

+ paft - BIpSS + pofie + pefad} dsdt, 2

in which the value of the regularization parameter o must conform with the level of the root-mean-square
error 6 of the right side. In the functional (2) the quantities pjs, ) >0 { =1, 2, ..., 8) are assigned func~
tions and 8 =0 or 1 in first- or second-order regularization, respectively.

In [3] an algorithm was proposed for the solution of the variational problem (2) for the one-dimensional
equation (1), based on the approximation of the unknown solution by cubic splines [4]. The effectiveness of the
algorithm, verified on the problem of solving the Abel equation [3] and the problem of reconstructing a distri-
bution function [5], is explained to a considerable extent by the properties of the convergence of cubic splines

Translated from Inzhenerno-Fizicheskii Zburnal, Vol. 383, No. 6, pp.1103-1108, December, 1977. Orig-
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